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1 Abstract

A genetic algorithm (GA) procedure has been devel-
oped to fit parameters for multi-species reactive inter-
atomic force field functions. Given an analytic form (of
which several are available), fitting parameters to multi-
species reactive force fields is extremely tedious and er-
ror prone because the parameter space is large and in-
cludes complex correlations. As a result, parameters are
available for only a few reactive systems (Si, C, and a
few others). By automating parameter fitting, we seek
to significantly expand the reactive systems that may be
investigated using molecular dynamics.

2 Introduction

The ability to model reactive solid systems with fast
molecular dynamics, as opposed to much more compute-
intensive quantum calculations, can enable a wide vari-
ety of crack propagation, thin-film deposition and etch-
ing, ion and cluster bombardment, surface diffusion,
surface reactions, molecular machine manufacture, nan-
otube strength and dynamics, and many other studies.
Unfortunately, even given good functional form for the
molecular potential, parameterization is extremely te-
dious, error prone, and makes a risky thesis topic as
many parameterization projects fail entirely. Worse, one
rarely finds a good functional form immediately, so pa-
rameterization must be repeated as the functional form
is developed. By automating parameterization with a
genetic algorithm (GA) using massive quantities of cycle-
scavenged CPU time we seek to change multi-species
reactive molecular potential development from a multi-
year to a multi-week affair.

3 Genetic Algorithm

GAs seek to mimic natural evolution’s ability to pro-
duce highly functional objects. Natural evolution pro-
duces organisms, whereas GAs can produce sets of pa-
rameters, programs, molecular designs, and many other
structures. Our GA, JavaGenes, employs the following
algorithm (words in quotes are typical GA terminology):

1. Represent potential parameters as a set of floating
point numbers; each set is called an ”individual”

2. Generate a ”population” of individuals with ran-
dom parameters

3. Calculate the ”fitness” of each individual

4. Repeat

(a) Randomly select ”parents” with a bias to-
wards better fitness

(b) Produce ”children” from the parents with ei-
ther:

i. ”crossover” that combines parts of two
parents into a child

ii. ”mutation” that modifies a single parent
iii. or a combination of the two

(c) Calculate the fitness of the child

(d) Randomly replace individuals of less fitness
in the population with the child

5. Until satisfied

The current fitness function is a measure of the dis-
tance between the energies calculated for many Si or
Ge clusters using an individual’s parameters and ref-
erence values calculated using higher quality quantum
codes and/or derived from experiment. Many additional
fitness functions are possible (bond length, vibrational
energies, minimal energy conformation, bulk properties,
etc.), but have not yet been implemented. Multiple fit-
ness functions may be combined by a weighted sum,
product, or using multi-objective methods.

While GA has successfully parameterized force fields
in the past [Hunger, Beyreuther, Huttner, Allinger, Rade-
lof, Zsolnai (1998); Hunger, Huttner (1999); Cundari,
Fu (2000)], until now GA has not been applied to pa-
rameterization of reactive force fields suitable for critical
nanotechnology tasks.

4 Functional Form

For proof of concept, we chose the well-established
Stillinger-Weber (SW) functional form for Si [Stillinger,
Weber (1985)].



SW expresses the total energy as the sum of two- and
three-body contributions:

E =
∑
i,j
i<j

v2(i, j) +
∑
i,j,k

i<j<k

v3(i, j, k) (1)

where E is total interaction energy, i, j, k indicate indi-
vidual atoms, and v is the interaction energy of n atoms.
To reduce computation, SW has a cutoff function which
forces each term to zero at large atomic separations.
This converts the problem from O(n3) to O(n) since
only nearby atoms need be considered. The terms are:

v2(i, j) = A(Br−p − r−q)c1 (2)

c1 = e
C

r−a ; r < a (3)
c1 = 0; r ≥ a (4)

where r is the i, j inter-atomic distance and all other
values are adjustable parameters.

v3(i, j, k) = α + λ(cos Θ− cos Θ0)2c2 (5)

c2 = e
γ

ri,j−a1
+ γ

rj,k−a2 ; ri,j < a1 ∧ rj,k < a2(6)
c2 = 0; ri,j ≥ a1 ∨ rj,k ≥ a2 (7)

where ri,j and rj,k are the two inter-atomic distances, θ
is the angle and all other values are adjustable parame-
ters. The parameters a, a1, and a2 defining the cut-off
distances are not evolved because they optimize perfor-
mance by degrading accuracy. The equilibrium angle,
Θ0 ≈ 109 degrees for the tetrahedral geometry of Si and
Ge, is also not evolved.

5 Results

As a proof of concept, we demonstrate the proce-
dure by (a) reproducing the published parameters for
Si by using SW energetics in the fitness function, (b)
evolving a new set of parameters, with a fitness func-
tion based on a non-orthogonal tight-binding method
[Menon, M.; Subbaswamy, K. R. (1993)] better suited to
Si cluster energetics than the published SW Si potential,
and (c) evolving parameters for Ge clusters, for which
SW parameters were previously unavailable. Evolution
was driven by a fitness function based on the energies
and forces calculated for Sin and Gen clusters (n < 7)
and was able to predict accurate energies for minimum
energy and deformed configurations of Sin (n = 7, 8, 33)
clusters, which were not used in the fitness function.

Figure 1 shows that the evolved Si parameters match
the tight-binding energies for Si33 clusters much more
closely than the original published parameters, both quan-
titatively and qualitatively. Figure 2 shows that the
Ge parameters match the tight-binding energies quite
well. Examining the evolved parameters (table 1) we see

that evolution has found parameters that would proba-
bly never be chosen intuitively or by deductive reason-
ing, although they match the overall data quite well.
In particular, note that p and q have different signs
and that for Ge α and λ have very large values. For
the mixed hetero-atomic systems, the methods involv-
ing taking arithmatic or geometric mean of the param-
eters belonging to individual components may not work
with the above set because of the relatively large differ-
ences in the magnitudes of some parameters. The het-
eroatomic systems with mixed species need to be fitted
separately.

Parameter Si Ge
A 40.83 21184
B 784.12 1979
C 6.31 29.18
p 9.94 3.59
q -0.8 -9.07
α 16.88 -9.75e17
λ 77.23 2.4e18
γ 3.91 282.3

Table 1: Best Parameters for eV/angstrom

6 Computational Issues

GAs typically require a great deal of processing, and
we run 1000s of jobs with randomized GA parameters
(population size, transmission operations, bounds for
parameters in the initial population, etc.). Fortunately,
GAs are embarrassingly parallel so the jobs can run si-
multaneously on many workstations. To provide these
cycles inexpensively, we use the Condor cycle scavenger
[Litzkow, Livny,Mutka (1988)] running on about 350
SGI and Sun machines at the NASA Advanced Super-
computing (NAS) Division. Each machine runs a dae-
mon that watches user I/O and CPU load and runs jobs
when the machines are otherwise idle.

7 Discussion

JavaGenes is able to generate a few dozen good pa-
rameterizations, out of a thousand jobs, in a few days
using the NAS Condor pool. Introduction of a new func-
tional form takes a few days to a week or so. If our initial
results are confirmed by additional use, development of
new classical potentials for reactive systems should be-
come routine. Furthermore, the process involved gener-
ates many parameterizations, not just one. Thus, stud-
ies can use multiple parameterizations, or even multiple
functional forms, to insure there is no dependence on
the precise parameterization used.
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Figure 1: Comparison of energies calculated for Si33 clusters using tight-binding vs. evolved and published SW
parameters. Each cross represents a cluster. Crosses on the diagonal line are a perfect fit. Evolved parameters were
generated using a fitness function with Si2−6 cluster energies calculated by the tight-binding method. In (a) the
vertical axis is the energy calculated using evolved parameters in the same units as [Stillinger, Weber (1985)]. In (b)
the vertical axis is the energy calculated using the published parameters. Horizontal axes are the energies calculated
by the tight-binding method. The figures clearly show that the evolved parameters match the tight-binding energies
much more closely than the published parameters. All energies are kcal/mol.
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Figure 2: Comparison of energies calculated for Ge2−6 clusters of tight-binding vs. evolved. Each cross represents
a cluster. Crosses on the diagonal line are a perfect fit. Evolved parameters were generated using a fitness function
with Si2−6 cluster energies calculated by the tight-binding method. The vertical axis is the energy calculated using
evolved parameters in eV/angstrom. The horizontal axis are the energies calculated by the tight-binding method. All
energies are eV.


