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I. A BSTRACT

We hypothesize that evolutionary algorithms can effectively
schedule coordinated fleets of Earth observing satellites. The
constraints are complex and the bottlenecks are not well un-
derstood, a condition where evolutionary algorithms are often
effective. This is, in part, because evolutionary algorithms
require only that one can represent solutions, modify solutions,
and evaluate solution fitness.

To test the hypothesis we have developed a representative
set of problems, produced optimization software (in Java)
to solve them, and run experiments comparing techniques.
This paper presents initial results of a comparison of several
evolutionary and other optimization techniques; namely the
genetic algorithm [5], simulated annealing [7], squeaky wheel
optimization [6], and stochastic hill climbing [1]. We also
compare separate satellite vs. integrated scheduling of a two
satellite constellation. While the results are not definitive, tests
to date suggest that simulated annealing is the best search
technique and integrated scheduling is superior.

II. I NTRODUCTION

A growing fleet of NASA, commercial, and foreign Earth
observing satellites (EOS) uses a variety of sensing technolo-
gies for scientific, mapping, defense and commercial activities.
As the number of satellites (now around 60) increases, the
system as a whole will begin to approximate a sensor web.
Image collection for these satellites is planned and scheduled
by a variety of techniques [11], [14], [15] and others, but
nearly always as separate satellites; not as an integrated sensor
web. Since activities on different satellites, or even different
instruments on the same satellite, are typically scheduled
independently of one another, manual coordination of ob-
servations by communicating teams of mission planners is
required. As sensor webs with large numbers of satellites
and observation requests develop, manual coordination will
no longer be possible. Schedulers that treat the entire web as
a collection of resources will become necessary.

Scheduling EOS is complicated by a number of important
constraints. Potin [13] lists some of these constraints as:

1) Power and thermal availability.
2) Limited imaging segments per orbit. In a given orbit,

a satellite will pass over a target only once. For the
sun-synchronous orbits used by most Earth observing
satellites, each orbit takes about 90 minutes.

3) Revisit limitations. A target must be within sight of the
satellite; and EOS satellites travel in fixed orbits. These
orbits pass over any particular place on Earth at limited

times so there are only a few imaging windows (and
sometimes none) for a given target.

4) Time required to take each image. Most Earth observing
satellites take a one dimensional image and use the
spacecraft’s orbital motion to sweep out the area to be
imaged. Thus, the larger the image the more time is
required to take it.

5) Limited on-board data storage. Images are stored in a
solid state recorder (SSR) until they can be sent to the
ground.

6) Ground station and communication satellite availability,
especially playback opportunities. The data in the SSR
can be sent to the ground either when the satellite
passes over a ground station or via geosynchronous
communication satellites. Ground station windows are as
limited as any other target, and suitable communication
satellites (mostly TDRSS) are only available when not
servicing higher priority flights (e.g., shuttle or station).

7) Transition time between look angles (slewing). Some
instruments are mounted on motors that can point either
side-to-side (cross-track) or forward and back (along-
track). In addition, some satellites can rotate to point
their instruments in any direction. These are called agile
satellites.

8) Cloud cover. Some sensors cannot see through clouds.
Not only do clouds cover much of the Earth at any given
time, but some locations are nearly always cloudy.

9) Stereo pair acquisition.
10) Coordination of multiple satellites. In a sensor web

an imaging request can be satisfied by any of several
satellites. Also, in many cases there is a need to image
a particular area by more than one sensor, often with
time constraints.

For further details of the EOS scheduling problem see [2]
and [15].

We hypothesize that evolutionary algorithms can effectively
schedule Earth imaging satellites, both single satellites and
cooperating fleets. The constraints on such fleets are complex
and the bottlenecks are not always well understood, a condition
where evolutionary algorithms are often more effective than
traditional techniques. Traditional techniques often require
a detailed understanding of the bottlenecks, whereas evolu-
tionary programming requires only that one can represent
solutions, modify solutions, and evaluate solution fitness, not
actually understand how to reason about the problem or
which direction to modify solutions (no gradient information
is required, although it can be used).

To test this hypothesis we have developed a (hopefully)
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representative set of problems and software to compare solu-
tions generated by various evolutionary and other optimization
techniques. We also present data comparing scheduling a two
satellite constellation as a (small) sensor web vs. as separate
systems to motivate integrated fleet scheduling.

Evolutionary and other algorithms have been applied to the
EOS scheduling problem by several authors, including:

1) Sherwood et al. [15] used ASPEN, a general purpose
scheduling system, to automate NASA’s EO-1 satellite.

2) Potter and Gasch [14] described a clever algorithm
for scheduling the Landsat 7 satellite featuring greedy
search forward in time with fixup to free resources for
high priority images.

3) Rao, et al. [12] reported scheduling ground station use,
but not imaging activity, for a fleet of seven Indian Earth
imaging satellites .

4) Lamaitre et al. [8] compared methods for sharing a
satellite among multiple users. They found that fixing
the fraction of the satellite devoted to each user was
poor in terms of global satisfaction; whereas satisfying
global criteria leads to poor performance in terms of
guaranteeing a particular fraction of imaging time to
each user.

5) Lamaitre’s group also compared constraint programming
and local search for scheduling an agile satellite [9].
They found that constraint programming is more flexible
but local search performs better.

6) Wolfe and Sorensen [17] compared three algorithms,
including the genetic algorithm, on the window-
constrained packing problem, which is related to EOS
scheduling. They found that the genetic algorithm pro-
duced the best schedules, albeit at a significant CPU
cost.

7) Frank et al. [2] described plans to apply heuristic based
stochastic search using the Europa [3] constraint system
to EOS scheduling.

The next section describes the model problems. This is
followed by a description of the optimization technique com-
parison software, the results of initial experiments, and future
plans. Further details on the model problems, and our Jav-
aGenes scheduling software may be found in [4].

III. M ODEL PROBLEMS

Since our project is designed to consider the scheduling of a
parameterizable generic system, not any particular spacecraft,
sensor, or sensor web, it is important to develop a set of model
problems that exhibit important aspects of EOS scheduling
now and in the future. We have attempted to base our model’s
sensors and satellites on hardware currently in orbit. We have
identified and begun to scope seven problems:

1) A single satellite with a single cross-track slewable
instrument.

2) A two satellite constellation with satellites identical to
that in problem one.

3) A single agile satellite with one instrument.
4) A single satellite with multiple instruments (one of

which is slewable).

5) A sensor web of single- and multiple-instrument satel-
lites communicating directly with the ground.

6) A sensor web of single-instrument agile satellites com-
municating with an in-orbit communications system
based on high-data-rate lasers.

7) A sensor web with a very large number of satellites
including satellites with multiple instruments. This prob-
lem presumes much cheaper and more reliable launch.

Problems 1 and 2 have been implemented. The Results sec-
tion compares a number of search techniques against problem
2 with the following characteristics:

1) One week of satellite operations.
2) Two satellites in sun synchronous orbit one minute apart.
3) One identical instrument per satellite.
4) Slewing up to 48 degrees cross-track in either direction

at a rate of 50 seconds/degree for each instrument.
5) 4200 imaging targets (takeImages) randomly distributed

around the globe; 123 of these never come into view of
either satellite.

6) 24 seconds data recording per takeImage.
7) A priority between 1 and 5 (higher priority is more

important) for each takeImage.

IV. EOS SCHEDULING BY EVOLUTIONARY ALGORITHMS

AND OTHER OPTIMIZATION TECHNIQUES

There are a number of optimization (evolutionary and
otherwise) algorithms in the literature. We compare a genetic
algorithm (GA), simulated annealing (SA), and stochastic hill
climbing (HC). In addition, we compare random and squeaky
wheel (SW) transmission operators. Random transmission
operators change a schedule at random (consistent with the
constraints). Squeaky wheel operators examine a schedule and
try to make changes that are likely to improve the schedule.

We represent a schedule as a permutation (the genotype)
of the image requests (takeImages). A simple, deterministic
greedy scheduler assigns resources to the requested takeIm-
ages in the order indicated by the permutation. This produces a
timeline (the phenotype) with all of the scheduled takeImages,
the time they are executed, and the resources used. The
greedy scheduler assigns times and resources to takeImages
using earliest-first scheduling heuristics while maintaining
consistency with sensor availability, onboard memory (SSR)
and slewing constraints. If a takeImage cannot be scheduled
without violating constraints created by scheduling takeImages
from earlier in the permutation, the takeImage is left unsched-
uled.

Simple earliest-first scheduling starting at epoch (time =
0) had some problems, and we discovered that the algorithm
works better if ’earliest-first’ starts with a particular imaging
window (period where the satellite is within sight of a target;
most takeImages have several windows in our week-long
problem) rather than at epoch. If the takeImage cannot be
scheduled before the end of time, the algorithm starts at
epoch and continues until the takeImage is scheduled or the
initial imaging window is reached. The window within which
a takeImage is scheduled is stored in memory and used by
children when they generate schedules. The extra scheduling
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flexibility may explain why this approach works better than
earliest-first starting at epoch.

Constraints are enforced by representing each resource
as a timeline. Scheduling a takeImage causes each relevant
resource timelines to take on appropriate values (i.e., in use
for a sensor, slew motor setting, amount of SSR memory
available) at different times. A takeImage is inserted at the
first time examined and available in all the required resource
timelines.

Search is guided by a fitness function that determines the
’goodness’ of a schedule generated from a permutation. The
fitness function must provide a fitness for any possible sched-
ule, no matter how bad it is, and nearly always distinguish
between any two schedules, no matter how close they are. Our
fitness function is multi-objective. The objectives include:

1) Minimize the sum of the priority of the images not
scheduled (takeImages). Each takeImage has a priority
between 1 and 5, where the larger numbers indicate
higher priority.

2) Minimize total time spent slewing (slew motors wear
out).

3) Minimize the sum of the slew angles for the images
taken (small slews improve image resolution).

These objectives are manipulated so that lower values are
better fitness; the objectives are then combined into a weighted
sum:

F = wp

∑
Iu

Ip + wsSt + wa

∑
Is

Ia (1)

whereF is the fitness,Iu is the set of unscheduled takeImages,
Is is the set of scheduled takeImages,Ip is the priority of a
takeImage,St is the total time spent slewing,Ia is the slewing
angle the schedule requires for a takeImage, andwp, ws, and
wa are weights (positive numbers).

We are now ready to describe the three search algorithms:

1) Stochastic hill climbing (HC) starts with a single ran-
domly generated permutation. This permutation (the par-
ent) is mutated to produce a new permutation (a child)
which, if it produces a better (more fit) schedule than the
parent, replaces the parent. Two cases are investigated:
five restarts per run and no restarts. With no restarts,
each search generates 100,000 children starting with a
random permutation. In the restart case, each search
consists of five sub-searches of 20,000 children each;
the best individual from all five searches is reported.

2) Simulated annealing (SA) is similar to HC except less
fit children can replace the parent with probabilityp =
e
−4F

T where4F is how much less fit the child is. The
temperatureT starts at 100 and is multiplied by 0.92
every 1000 children (100,000 children are generated per
run).

3) The genetic algorithm (GA) seeks to mimic the natural
evolution of populations of organisms and there are
many variants. Our GA employs the following algo-
rithm:

a) Generate a population of 100 random permutations
b) Calculate the fitness of each permutation
c) Repeat

i) Randomly select parent permutations with a
bias towards better fitness

ii) Produce child permutations from the parents
with:
A) crossover that combines parts of two parents

into a child, or
B) mutation that modifies a single parent

iii) Calculate the fitness of the child
iv) Randomly replace individuals of less fitness in

the population with the children
d) Until 100,000 children have been produced

The search for a good schedule starts with one or more
random permutation (the initial parents) and uses mutation and
crossover operators to create children from parents. This paper
compares four mutation operators and one crossover operator.
The mutation operators are:

1) Random swap. Two permutation locations are chosen
at random and the takeImages are swapped. Swaps are
executed 1-9 times per mutation. A single random swap
is called order-based mutation [16].

2) Squeaky swap. This is the same as random swap except
that the takeImages to swap are chosen more carefully.
Specifically, a tournament of size 10, 20, 50, 100, 200,
or 500 selects both takeImages. One takeImage that
’should’ be moved forward in the permutation is chosen.
The winning takeImage is (in this order):

a) unscheduled rather than scheduled
b) higher priority
c) later in the permutation

The other takeImage is chosen assuming it should be
moved back in the permutation. This tournament winner
has the opposite characteristics. Although the takeIm-
ages to swap are chosen because one ’should’ move
forward in the permutation and the other ’should’ move
back, this is not enforced. Experiment determined that
the desired direction of the swap did not actually occur
nearly as often as expected, occasionally less than half
the time!

3) Placed squeaky swap. Here the direction is enforced. A
separate tournament (of size 10, 20, 50, 100, or 200) is
conducted for each takeImage. The takeImage to move
forward is forced to be in the last half of the permutation.
The takeImage to move back is then forced to be at least
half way towards the front.

4) Cut and rearrange. The permutation is cut into 1-5 pieces
and these are put back together in a random order. This
is similar to the cut-set based operators used in the
traveling salesman problem community.

The crossover operator is only used in the genetic algo-
rithm. The operator is Syswerda and Palmucci’s position-based
crossover [16]. Roughly half of the permutation positions
are chosen at random (50% probability per position). These
positions are copied from the father to the child. The remaining
takeImage numbers fill in the other positions in the order they
appear in the mother.

In many cases several different transmission operators
and/or the same kind of operator with different sized tour-
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naments, number of swaps, or cuts were used. In these cases,
each child was produced by a randomly chosen transmission
operator.

V. RESULTS

A number of search technique/transmission operator pairs
were compared. Each combination was repeated 94 times to
get statistically significant results. The resulting distributions
were spot checked for a gaussian distribution to insure the
Student’s T-test is valid. In each trial, evolution produced
100,000 children.

A quantitative comparison of search techniques and trans-
mission operators (various forms of mutation and crossover)
can be found in table I. The techniques at the top of the table
produce the best schedules, the techniques at the bottom the
worst. A few observations:

1) Simulated annealing is clearly the best search technique.
It is not surprising the SA beats HC, since HC is
clearly vulnerable to local minima. To understand why
SA and HC beat GA, consider the building blocks in
the permutation. These may be thought of as sets of
takeImages in a particular order that leads to good
partial schedules. Moving an arbitrary takeImage before
a building block can easily disrupt it by making some
of the takeImages unschedulable; or worse, causing one
of the takeImages in the building block to be scheduled
in another window further disrupting the building block.
Since good building blocks are thought to be essential
to GA performance [5], GA does poorly.

2) Random swap mutations beat the smarter ’squeaky’
mutation where the takeImages to swap are chosen more
carefully (a counter intuitive result). This may be, in
part, because the squeaky operators limit the possible
moves an algorithm may take. This can create additional
local minima that the search then falls into.

3) Multiple swaps are better than a single swap, possibly
because some moves are impossible with a single swap.

4) Ordering techniques by priority or takeImage rather
than fitness doesn’t make any difference for the best
techniques, and much of the difference that does occur
is not statistically significant.

5) The cut and rearrange operators do very poorly. Cut and
rearrange works well for the traveling salesman problem
because moving contiguous chunks of the permutation
relative to each other does not change the partial fitness
of the chunk. In permutation driven scheduling, however,
reversing the order of two contiguous chunks can cause
very large changes in the schedule.

These observations should be considered preliminary rather
than definitive. First of all, this is a single problem and results
may vary when a larger range of the model problems are
addressed. Second, the squeaky algorithms can stand improve-
ment and may someday outperform the random operators.
Nonetheless, if these results stand up, there are some important
implications.

1) Simulated annealing requires less memory than the ge-
netic algorithm and does not require crossover operators

or a population, making it better performing, more
efficient, and easier to implement.

2) Random swaps out perform the ’smarter’ squeaky swaps,
making random swaps better performing, faster, and
easier to implement.

3) One should allow multiple random swaps, in spite of the
minor increase in code complexity.

Figure 1 shows the evolutionary history of the best individu-
als for the best schedules evolved by simulated annealing (SA),
hill climbing (HC), and the genetic algorithm (GA) using the
the one random swap mutation operator. Notice that although
simulated annealing wins in the end, it trails GA until about
generation 50 and trails HC until about generation 70. SA
seems to be doing a better job of finding and then exploiting
a deep minimum. Notice also that all three techniques are still
improving the schedule at the end of the run, suggesting that
additional evolution (more than 100,000 children) would be
rewarded with better schedules.

One unexpected property of the schedules generated was the
slewing. Specifically, in order to minimize total slewing time
(St from equation 1) the schedules tended to place takeImages
such that the instrument is slewed to extremes (see figure
2); which will generate relatively low resolution images. This
could perhaps be improved if the fitness function gave more
weight to minimizing the sum of the slews or if the instruments
slewed faster (which would also be more realistic).

A second experiment compared GA with one swap operator
on two problems: in the first, each satellite was randomly as-
signed half of 4,200 takeImages; in the second, either satellite
was allowed to execute any takeImage (see table II). As might
be expected, the case where any satellite could take any image
produced superior schedules. Specifically, the shared case was
able to take about 28% more images, the priority measure
improved 40%, and fitness 35%. This suggests that integrated
fleet scheduling is much better than separately scheduling each
satellite or sensor.

VI. FUTURE WORK

Future work will be focused on expanding table I to include
more problems and techniques. Specifically, we intend to add:

1) Additional model problems.
2) A duty cycle constraint. This constraint requires that an

instrument is not used for more thanu seconds in any
t second time period.

3) Improved squeaky operators; in particular, shifting a
high priority, unscheduled takeImage forward, rather
than swapping with a scheduled, low priority takeImage.

4) Swap operators where the number of swaps is a proba-
bilistic function of the number of children that have been
produced. As evolution proceeds, the number of swaps
is reduced. This encourages large steps in the beginning
of evolution and smaller refinement steps near the end.

5) Transmission operator evolution; where transmission op-
erators that have done well early in evolution are more
likely to be used.

6) Additional forms of local search.
7) HBSS (Heuristic Biased Stochastic Search) with con-

tention based heuristics similar to those proposed in [2].
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search algorithm transmission operators fitness (equation 1) priority (wp

∑
Iu

Ip) takeImage (Iu)

SA 1-9 swap 2171 1873 1199
SA 1 swap 2354 2077 1295

HC 5 restarts 1-9 swaps 2539 2287 1415
HC 5 restarts 1 swap 2564 2313 1429
HC 0 restarts 1 swap 2575 2327 1436

SA 1 squeaky swap 2772 2527 1615
SA 1 placed squeaky swap 2814 2559 1579
HC 1 squeaky swap 2868 2625 1623

GA population = 100 crossover and 1 swap 3007 2759 1558
GA population = 100 1-5 cut and rearranges 3008 2754 1526

SA 1-5 cut and rearranges 3012 2737 1439

TABLE I

COMPARISON OF SEARCH TECHNIQUES. SEARCH-TECHNIQUE/TRANSMISSION OPERATOR PAIRS ORDERED BY MEAN FITNESS. TECHNIQUES ARE

ORDERED BY FITNESS(LOW VALUES ARE BETTER SCHEDULES FOR ALL MEASURES). PRIORITY IS THE SUM OF THE PRIORITY OF ALL UNSCHEDULED

TASKS. TAKE IMAGE IS THE NUMBER OF UNSCHEDULED TAKEIMAGES. ALL DATA ARE THE MEAN OF 94 SEARCHES. VALUES ARE ROUNDED DOWN TO

THE NEXT LOWEST WHOLE NUMBER. ALL DIFFERENCES ARE STATISTICALLY SIGNIFICANT(AS MEASURED BY STUDENT’ S T-TEST) EXCEPT FOR

FITNESS: HC WITH 0 AND 5 RESTARTS WITH1 SWAP, AND THE WORST THREE; PRIORITY: ONLY THE WORST THREE; AND SEVERAL OF THE TAKEIMAGE

COMPARISONS.

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100

children (1000s)

fi
tn

e
ss SA

HC
GA

Fig. 1. A comparison of the evolutionary history of simulated annealing, hill climbing, and the genetic algorithm. Lower fitness values indicate better
schedules.

problem fitness (equation 1) priority (wp

∑
Iu

Ip) takeImage (Iu)

shared 2171 1873 1199
separate 3346 3096 1657

TABLE II

COMPARISON OF SHARED TARGET VS SEPARATE TARGETS FOR A TWO SATELLITE CONSTELLATION USINGGA WITH ONLY SINGLE SWAP MUTATION AND

CROSSOVER. ALL COMPARISONS ARE STATISTICALLY SIGNIFICANT. THE SHARED CASE IS25-40%BETTER DEPENDING ON THE MEASURE USED FOR

COMPARISON.
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Fig. 2. The slew history for one satellite in the best schedule generated. The horizontal axis is time; a total of one week. The vertical axis is the amount
of cross-track slew necessary to execute the scheduled takeImages for this satellite. Note the preference for extreme slews. The extreme slews apparently
minimize the total slewing time sufficiently to overcome the fitness pressure towards small slews.

8) A multi-objective co-evolution genetic algorithm [10].
The present fitness function depends on somewhat ar-
bitrary weights to turn multiple objectives into a single
objective for fitness comparisons. A true multi-objective
approach might generate better schedules.

9) Changing the fitness function to normalize the sum of
the amount of slew for each scheduled takeImage by
the number of scheduled takeImages. At present, this
objective increasesas more takeImages are scheduled,
penalizing what we want to do!

VII. SUMMARY

Earth imaging satellite constellation scheduling is a complex
task with many variables and interacting constraints. We
hypothesize that evolutionary programming can solve the EOS
scheduling problem effectively and have begun to test various
evolutionary search techniques and transmission operators.
Simulated annealing with 1-9 random swaps performed the
best of those techniques we have tested on a single two-
satellite problem. We have also shown that scheduling a small
fleet as a combined resource outperforms separate scheduling
for each satellite by about 25-40%.
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